

VIB – R&D

Crop Innovation & Business Meeting April 3rd 2017

Els Beirnaert, Senior Manager New Ventures

VIB's mission

Conduct frontline life sciences research "Excellence in Science and Innovation"

Translate results into benefits for society "Excellence in Tech Transfer and Entrepreneurship"

VIB's road to success

- University campus
- Complementary expertise of university and VIB staff
- Framework agreement between VIB and university
- Mutual added value
- Share return on investment
 - Publications: 2 affiliations
 - IPR: joint IP (VIB in charge)
- VIB research budget: 120 M€

High-quality, focused research areas

3 88

Plant Systems Biology

Cancer Biology

Neurobiology

Translational Neuroscience

Inflammation

R

Redical

Biotechnology

Structural Biology

Microbiology

Strong track record for innovation in Agro

- UGent: cradle of plant biotechnology
- 1982: Foundation of Plant Gentic Systems (PGS)
- VIB's Leading research center (`PSB') in plant science
- Foundation of 3 agbio spin-off companies:
 - deVGen (1997)
 - RNAi
 - Hybrid rice (acquired by Syngenta in 2012)
 - CropDesign (1998)
 - Yield traits
 - Rice & corn
 - HTP phenotyping (acquired by BASF in 2006)
 - Agrosavfe (2013)
 - Innovative formulations for crop protection
 - 2 start-up projects incubating

VIB approach towards start-ups

SCIENCE MEETS LIFE

VIB

Shift towards longer incubation time: Derisking science – Need for stronger POC Derisking business – Start-up management team

The Power of Aggregation

Executive summary

- Novel proprietary technology for targeted knock-down of proteins through protein-protein aggregation
- Broad and differentiating technology platform with multiple agapplications:
 - Crop protection: targeting proteins from organisms causing damage to plants (pests and diseases)
 - **Crop improvement**: targeting proteins from the plant
- Two ways to deploy the technology:
 - As transgenes for GM crops: crop protection / improvement
 - As peptides for crop protection
- IP protected by broad patent families owned by VIB

Protein aggregation process in nature

aggregation-nucleating segment

Protein aggregation

- is specific : proteins preferentially associate with themselves when aggregating
- is not determined by the entire protein sequence but by <u>short sequence</u> <u>stretches</u> which can be identified by computer algorithm
- can result in functional knock-down of protein function

The Discovery Process

Process covered by granted patents* and pending patent applications** covering method of protein interference, use of protein interference and product claims

*: US 9,095,556; EP 1962883; CN 101340925; AU 2006326940; CA 2,632,331; IL 192001 **: WO2012/12341: pending in AU, BR, CA, CN, EP, IL, IN, JP, US; WO2007/071789: still pending in BR, JP, IN

Examples for Successful Applications of technology

Oncology

Pept-in targeting mouse VEGFR2

B16 tumor model for melanoma Tumor volume (mm³)

 Tumor cells (250,000) injected on day 0, treatment on day 3

Novel oncology drugs by inhibiting

function of growth factor receptors

• N = 5 mice per group

Agro-Bio

Pept-in targeting plant growth inhibitor

Plant growth model

Pept-in

Improved crops by functional knock

down of growth inhibitors

Infections

Pept-in targeting proteome of Staphylococcus

SCIENCE MEETS LIFE

Sepsis model Staphylococcus Aureus

Rationale for use in Bacterial Infections

	Targeting	 Targeting defined by primary amino acid sequence Designed to aggregate in target cells Control over level of cross-reactivity: single vs multiple targets; species specificity 	Specificity	
	Mode of action	 Loss of cell function through protein aggregation Aggregation happens in unfolded proteins → Fast onset of effect in pathogens Unexplored target space: Any protein can be targeted 	Efficacy	
B	Membrane crossing	 Charged gatekeeper residues flank the Pept- in active ingredient Reaching intracellular targets Ability to target essential intracellular proteins → Prevention of resistance development 	Use in Gram negative infections	SCIENCE MEETS LII

Proof of Concept – Efficacy Bacterial Infections

POC in Arabidopsis: BRASSINOSTEROID target

Plant steroid hormones

Regulate cellular expansion, proliferation and differentiation

Role in multiple developmental processes

Growth-promoting effect

Selected targets: BRI1, BAK1, BIN2, BES1, BZR1

Focus on **BIN2** kinase (negative regulator of BR signaling)

Objectives:

- Visualize aggregation in plants
- Target a protein of interest
- Prove the functional knock-out

Induction of aggregation in plants

Target: BIN2

Target: GWD

Stable expression in Arabidopsis and Zea

Transient expression in Arabidopsis

SCIENCE MEETS LIFE

Co-localization and physical interaction in vivo

Transiently transformed *N.benthamiana* leaves

<u>IP</u> ait249NF-GFP+ BIN2 ait249R-GFP+ BIN2H looster-GFP+ BIN2H ait249-GFP+ BIN2h ait249NF_Tand-GF reeGFP+ BIN2HA BIN2HA Col-O М $50 \longrightarrow$ **α- Η** 37 -> α- GFP $20 \rightarrow$ BAIT17 BIN2 Anti-GFP

Anti HA

35S::BIN2-GFP pMDC:: Bait249NF_Tand-RFP

Protein interference in transgenic plants

Protein interferors can be recombinantly expressed in plant cells resulting in a phenotype consistent with specific protein knock-down

Executive summary

- Novel proprietary technology for targeted knock-down of proteins through protein-protein aggregation
- Broad and differentiating technology platform with multiple agapplications:
 - Crop protection: targeting proteins from organisms causing damage to plants (pests and diseases)
 - **Crop improvement**: targeting proteins from the plant
- Two ways to deploy the technology:
 - As transgenes for GM crops: crop protection / improvement
 - As peptides for crop protection
- IP protected by broad patent families owned by VIB

