

Breeding for Sustainable Palm Oil Production

Presented by Sharifah Shahrul Rabiah Syed Alwee

Date: April 4th, 2017

Introduction to Felda Global Ventures

VISION MISSION

To be the leading globally diversified integrated agri-business

To be a global leader by:

- Creating value through our human capital
- Championing our locally invested culture
- Building an integrated value chain advantage
- Cultivating diversification in commodities and geography

Felda Global Ventures Holdings Berhad (FGV) is a global, diversified and sustainable integrated agri-business leader, dynamically advancing to lead as a top 10 global player by 2020.

Incorporated in Malaysia in 2007, FGV progressed into a diverse agri-business company and rapidly established itself as Malaysia's leading global agri-business player.

Today we are the world's largest producer of crude palm oil (CPO), a leader in Malaysia's sugar industry and a pioneer of cutting edge green technologies, anchored by a 18,000 strong workforce and a global integrated supply chain able to add value to every endeavour.

Our Overall Value Chain

Palm Downstream Cluster

- + Innovating new palm-based products
- + Processing of crude palm oil into refined oils & focuses on FMCG

Sugar Cluster

+ Malaysia's leading refined sugar producer

Trading, Marketing and Logistics Cluster

- + Ensures FGV's integrated supply-chain support
- + World's largest bulking installation for vegetable oil
- + One of the global palm oil trading house

R&D and Agri-Services Cluster

- + Breeding disease-resistant, high-yielding oil palm
- + Improving the yield of selected agri-crops through breeding, tissue culture agronomy & crop protection

R&D and Agri-Services Cluster

Utilizing cutting-edge technologies across all facets of FGV

FGV's world class R&D and Agri-Services Cluster is anchored on four decades of research and development. The Cluster's key objective is to utilize cutting-edge agriculture technologies to enhance operational performance and commercial utilisation across all facets of FGV. The company's award-winning Yangambi oil palm planting material, which has 42 percent market share in Malaysia, is just one of R&D's innovative products.

Award-winning oil palm seeds FGV

Seeds SOLD 24.1M # No.1 Market Share 42%

Malaysia, 2014

DxP Yangambi ML 161 Germinated Seeds Capacity: 40.0 million p.a.

Ramet Clonal Seedlings

Capacity : 2.5 million p.a.

ALL THE WORLD 336 Million Seeds

OIL PALM BREEDING PROGRAMME

Elite Variety

FGV OIL PALM PLANTING MATERIALS IMPROVEMENT PROGRESS

YEAR RELEASE		MATERIALS	TRAIT OF INTEREST	
	1980s	La Me / AVROS / Yangambi	Yield	
	1990s	Yangambi	Yield	
	2000s	Yangambi (ML 161)	Yield	
	2010s	3 way-cross	Yield + High density	
	2016	GT1	Ganoderma tolerance	

A highly efficient crop (Oil World 2016) Highest Yield

Strategy to increase productivity per ha of land

- 1. Higher yield per hectare
- 2. Higher palm stand per hectare
- 3. Palms tolerant to common disease
- 4. Ability to plant in environmentally challenged areas drought tolerance
- 5. Shorter palms for longer economic lifespan

DxP Felda 3 Way

Selection method (Modified RRS)

Assembling DxP Felda 3 way

PISIFERA

IRHO Yangambi

L718P, L322P, L519P, L238P

ΤxΡ

IRHO Yangambi

Family: ML

ΤxΡ

IRHO Yangambi (Sib crossing ML)

Family: GMH, AB1, GNR

Pisifera selection

Based on tenera sib and progeny test performance

Tenera selection

Based on individual, family

DxP FELDA 3 WAY

Summary Information About **FGV**DxP Felda 3 Way

- The newest DxP FGV variety, a result of long breeding scheme and was released in 2008
- The variety comes from 3 breeding lines. The Dura line is a result of introgression of Dura Nigerian (MPOB) and Dura Deli Group. And the pisifera line comes from Yangambi ML 161 family.
- The advantages of Nigerian Dura is the small bunches with high number of bunches per year. And the advantages of Pisifera Yangambi ML161 is the high yield (CPO and kernel)
- High density interval planting 148 palms / ha to 160 palms/ha

_	Planting Material testing at Sahabat 6 Rachis length data at 7 year after plantin				
DxP Yangambi P1	Mean	5.66			
3Way P1	Mean	4.86			

Results of density trial conducted on Felda 3Way

Trt	Density	BN	BW	ABW	T/ha			
2011 (2nd YAH)								
T1	136	18.5	148.5	8	20.2			
T2	148	23.6	198.3	8.4	29.4			
T3	160	18.9	148.5	7.9	23.8			
2012 (3rd YAH)								
T1	136	21.3	229.2	10.8	31.2			
T2	148	26.5	251.9	9.6	37.3			
T3	160	25.6	236.1	9.3	37.8			
2013 (4th YAH)								
T1	136	24.8	299.6	12.1	40.7			
T2	148	27	316.5	11.7	46.8			
T3	160	26.9	316.8	11.8	50.7			
2014 (5th YAH)								
T1	136	23.8	278.2	11.7	37.8			
T2	148	23.2	262.1	11.3	38.8			
T3	160	22.2	249.2	11.3	39.9			

Economic gain through higher density planting

Palm stand /hectare	Mean fresh fruit bunch weight (tonne/hectare)	% gain over 136 palm/hectare planting
136	32.48	-
148	38.08	17.24
160	38.05	17.15

Additional USD 6,660/Ha in first 5 years of harvesting

Assumptions: OER: 25%; KER: 4.3%; CPO Price: USD 564/MT;

Kernel Price: USD 496/MT

Oil Palm Improvement

Dura lines

D x D crosses = 100% D

20 – 30% planted for evaluation

Selected dura for seed production and/or progeny test

70 – 80% lost opportunities due to resource shortage

Pisifera line

TXTorTXP

1D:2T:1P

1T:1P

30 – 40% planted for evaluation

???? Lost opportunity

Breeding by Design: Marker-Assisted Selection in Pisifera improvement programme

Commercial DxP seed production

MAB = Reduced Oil Palm Breeding Costs

Conventional breeding

- > 30 crosses, 100 plant/cross, RM200/cross (\approx 20 ha)
- \triangleright RM5.5/seedling, RM6,000.00/ha (\approx 20 ha)
- $ightharpoonup \sim RM2,000/ha/yr (\approx 20 ha, 5 yrs)$

MAS breeding

- > 30 crosses, 100 plant/cross, RM200/cross (\approx 20 ha)
- \triangleright RM5.5/seedling, RM6,000.00/ha (\approx 10 ha)
- > ~ RM2,000/ha/yr (\approx 5 ha, 3 yrs)

RM119,300.00-

R&D for SUSTAINABLE OIL PALM INDUSTRY

- Convergence of breeding, biotechnology and genomics compliments each other to arrive at a common goal of producing high performing valueadded planting materials.
- New oil palm varieties are aimed at sustainable production of palm oil across various environmental demands
- These development are of immense importance to the 3P principals (people, planet, profit) for sustainable palm oil production.

