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Genomic selection

young animal blood sample DNA extraction and interpretation breeding values

* Prediction of genetic values from numerous variations in the DNA code

* Introduced in landmark paper of Meuwissen et al. in 2001

« Rapid adoption by the animal and plant breeding community. Routinely applied in many plant
and animal species



The quantitative geneticists' revenﬁ'\IT

Simple traits:

« small number of genes
 Mendelian inheritance patterns

* limited influence from environment

* QTL mapping, Marker-assisted
Selection

» Gene moadification / editing
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Complex traits:
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* large number of genes

» distributional assumptions \
 quantifiable influence from

environmental

* breeding value estimation
« GWAS, Genomic Selection
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BLUP /

. QTL mapping GWAS
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Genomic Selection concept i
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Training population \ ( Selection candidates
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Escaping the curse of dimensionality =it

* As the number of dimensions (i.e. molecular markers) grows, the
amount of data we need to generalize accurately grows
Exponentially
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Statistical Modelling: The Two Cultures S
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 1a) Traditional statistical modelling like the 3
Linear Mixed Model framework: GBLUP,
RRBLUP o

 data is generated by a stochastic model:
e additive, linear effect of each marker
» marker effects adhere to a Gaussian distribution
 residuals adhere to a Gaussian distribution S

Density

“this commitment has led to irrelevant theory, questionable conclusions, and has kept statisticians fr.
working on a large range of interesting current problems.”, Breiman 2001



Statistical Modelling: The Two Cultu

* 1b) Bayesian models

BayesB
BayesA sl BayesC
s /
4 3b
®  1p/sa = 2b
Bayesian Bayesian Lasso
Ridge Regression /
14 1c/5b

Finite Mixture Models
(e.g., Spike-Slab K=2)
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“Bayesians address the question everyone is interested
in, by using assumptions no-one believes” Lyons, 2007




Statistical Modelling: The Two Cultures S
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« 2) Machine learning approaches: uses
an algorithm to learn a function, treating

the data mechanism as unknown: \
y = f(X) o |
|
—

» fewer assumptions

« Random forests, neural networks,
support vector machines, ...
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1950
Alan Turing created a 1957 1979
test to check if a First neural network for computers ) )
machine could fool a (the perceptron) was invented by g:l-l:i:"'ts ﬂ‘-f Stanézrdhur;wr??é 2002
human being into Frank Rosenblatt, which simulated ifornia, invented the Stanfo ) i .
s the thought processes of the human Cart which could navigate and A software library for Machine Learning,
named Torch is first released.

e o king avoid obstacles on its own

to a machine. brain.
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1997 2016

1952 1967
The first computer leaming The Nearest Neighbor IBEM’s Deep Blue beats the world AlphaGo algorithm developed
by Google DeepMind managed

program, a game of Algorithm was written. champion at Chess.
to win five games out of five in

checkers, was written by
Arthur Samuel. the Chinese Board Game Go
competition.
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GS + ML: a match made in heaven?  GHENT
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Portrait of a DisappointmerﬂmIT
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2010: Machine learning techniques are generally not able to significantly outperform model-based

genomic prediction approaches due to the limited size of the training populations in a plant
breeding context (Maenhout et al.) \

2017: Machine learning slightly outperformed other methods, but required parameters
optimization for GS implementation (Bin Kwong et al.)

2018: experimental results indicate that DeepGS can be used as a complement to the commonly
used RR-BLUP in the prediction of phenotypes from genotypes (Ma et al.)

2019: although artificial neural networks did not perform best for any trait, we identified
strategies that boosted their performance to near the level of other algorithms

2020: CNNGWP provides a promising approach for GWP, but the magnitude of improvement
depends on the genetic architecture and the heritability (Waldmann et al.)

2021: DL models gave 0 to 5% higher prediction accuracy than rrBLUP model under both cross
and independent validations for all five traits used in this study (Sandhu et al.)
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The Unreasonable Effectiveness of Data ;U’nygRS”Y

« “simple models and a lot of data trump more elaborate models based on less data’,
Halevy et al., 2009

. pen‘ormance of the model increases logarithmically as the training dataset
increases”, Sun et al. 2017

* “while a tremendous amount of time is spent on engineering and parameter
sweeps; little to no time has been spent collectively on data”, Sun et al. 2017

B. Training Data Size
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Addressing the elephant in the room Pt

Getp’fﬁmr die tryin'.
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Phenotyping bottleneck A0

* Remote sensing technologies: UAV, UGV, RGB, NIR, LiDAR, MRI
* Functional structural plant models (FSPMs)
 Estimate selection trait from proxy traits: \

* (Kernel)-PLS f
« Random forests 1

* multivariate genomic prediction
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Genotyping bottleneck
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* Low-cost genotyping:
 ultra low-density genotyping complemented by imputation

« skim sequencing complemented by imputation \

Inbred parent 1 Inbred parent 2
F1 offspring

l]]][ creation

Genotyped DH with . Imputed DH
DH offspring genotypes
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* Genomic Prediction As A Service (GPAAS):
» consortium members provide a combination of

« plant material \

» genotypic data
» extracted DNA samples
» standardized phenotypic data

* on-line portal providing multi-trait genomic predictions of their
breeding pool

Business model
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Questions, datasets, research topics, copyright

infringement claims?
Steven.Maenhout@UGent.be
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