

THE DNA INNOVATION ENGINE DRIVING CROP IMPROVEMENTS

FROM TELOMERE TO TELOMERE

Source: Adam Phillippie https://genomeinformatics.github.io/CHM13v1/

KeyGene

THE LONG AND SHORT OF SEQUENCING: TECHNOLOGY

- > From long to ultra long read sequencing
- > Innovations in raw read accuracy
- > PacBio® High Fidelity (HiFi)
- > Oxford Nanopore Technologies (ONT)

THE LONG AND SHORT OF SEQUENCING: DNA ISOLATION

- KeyGene has a longstanding track record in DNA isolation improvements
- Current High Molecular Weight (HMW) DNA isolation protocol
 - In solution
 - Nuclei as starting point
 - Without pipettes
 - Flexible

Key Gene

> Ultra HMW DNA isolation: encapsulation

FROM HIGH TO ULTRA HIGH MOLECULAR WEIGHT

ACCURACY OF DE NOVO GENOME ASSEMBLY MELON

KeyGene

Percent differences to reference

Percent differences to reference

ONT RAW READ ACCURACY IMPROVEMENTS

KeyGene

COMPARISONS DE NOVO GENOME ASSEMBLIES

> Structural level

TARGETED SEQUENCING: A CUTTING EDGE TECHNOLOGY

- > Resolve a long standing need in breeding research to screen for causative mutations/variation linked to traits of interest
- > On native DNA -> no PCR amplification
- > Long read sequencing technologies
- > Flexibility

e Gene

WORKFLOW KEYGENE'S TARSEQ TECHNOLOGY

KeyGene

Protocol: 1. (HMW) DNA isolation

2. Targeting loci: CRISPR enzyme-based ()

3. Non-target DNA removal: exonuclease (🔇)

4. Clean up

5. ONT Library prep (motor protein ())

6. ONT Sequencing

- > 814 loci were targeted in 19 melon samples
- > Sequencing on ONT PromethION platform
- > 80% of target loci >20X coverage
- > Variation detection: SNPs, structural variants & methylation

BOOSTING TARGET ENRICHMENT

- > Adaptive sampling (AS)
- > Combine with TarSeq
- Combined approach boosts enrichment up to ~55X!

KevGene

THE INNOVATIONS ENGINE: FUTURE PERSPECTIVE

- A systems biology approach:
- integrate -omics information
- Smooth interplay wetlab & bioinformatics

- > Accelerate lead discovery and validation
 - Single Cell and Spatial technologies
 - De novo peptide sequencing

KeyGene

FUTURE: SINGLE CELL & SPATIAL TECHNOLOGIES

- > Combination genomics & imaging innovations
- Measuring nucleic acids and proteins while maintaining spatial integrity even in 3D
- > Main challenges

Gene

- Cell isolation (tissues, species etc.)
- Reporter lines for specific cell types
- Data analysis
- > Crop IB presentation Michiel Bontinck

15

FUTURE: DE NOVO PEPTIDE SEQUENCING

 'Not to understand what could happen (genome) in crop traits, but moving towards what is happening right now (proteome)' Jonathan M. Rothberg

- > Single molecule Next-Gen protein sequencing technologies
 - Quantum-Si: time domain sequencing on semiconductor chip
 - Erisyon: fluorosequencing combined with Edman cycling
 - Encodia: ProteoCode technology

•\Gene

dick.roelofs@keygene.com

@ KeyGeneInfo

