

## bacterially enhanced plant growing media for controlled environment agriculture.

Thijs Van Gerrewey – Cropib – 28 Mar 2022





#### bacterially enhanced plant growing media for controlled environment agriculture.



controlled environment agriculture

# timeline.



plant growing media



bacteria



## vertical farm.

"a **multilayer indoor** plant production system in which all growth factors are **precisely controlled** to produce high quantities of high-quality fresh produce **year-round**, completely **independent** of solar light and other outdoor conditions."

SharathKumar et al. (2020)



Van Gerrewey et al. (2021) Vertical Farming: The Only Way Is Up?



## a brief history.



Suske en Wiske, Op het eiland Amoras, Willy Vandersteen, Standaard Uitgeverij (1945)

Gartenbaumuseum (1964)



## hydroponics.





## led grow lights.





efficient energy conversion and less heat dissipation



manipulate the light spectrum, intensity, and timing





## vertical farming will become a sustainable addition to agriculture

- water use, food mileage, food security
- renewable energy

# the need for niche expansion.



high costs  $\rightarrow$  only profitable in specific niche markets

- geographical
- added value



#### niches need to be expanded

- technological advancement
- plant biology



## the need for support.





#### loss of physical structure for rooting

#### a growing medium provides:

- physical support
- optimal water/air ratio
- nutrient buffer capacity



#### a growing medium is:

- standalone material or mixture
- additives



## growing medium performance: creating an ideal home for plant roots.

#### physical

- easily available water
  - aeration

#### chemical

- pH
- nutrient buffering capacity
- nutrient content

#### biological

- phytosanitation
- biological breakdown
- nitrogen competition



## environmental concerns of peat use.







#### peat properties

• sound performance, wide availability, and low cost



## environmental concerns of peat use.





#### peat properties

• sound performance, wide availability, and low cost



#### sustainability of peat production

- CO<sub>2</sub> emissions and ecosystem damage
- responsible use and restoration of peatland
- peat-reduced future



## environmental concerns of peat use.



#### peat properties

• sound performance, wide availability, and low cost



- CO<sub>2</sub> emissions and ecosystem damage
- responsible use and restoration of peatland
- peat-reduced future

alternative materials to the rescue?



## plant growing media in the future.





#### exponential increase in growing media use

- more hydroponics, more growing media use
- development of new materials and blends



## opportunity to create bacterially enhanced plant growing media

• positive role of microbiome is given little attention



## the root microbiome: the plant's gut microbiota.







#### host-associated microbiome

- nutrient availability
- protection against pathogens



## the root microbiome: the plant's gut microbiota.





#### host-associated microbiome

- nutrient availability
- protection against pathogens



#### microbial gradient

- high density: 12 x world population or 8000 x Belgium
- decrease in diversity
- niche adaptation



## plant growthpromoting rhizobacteria (PGPR).

### plant-beneficial functions

### nutrient acquisition

### phytohormone production

disease defense
environmental stress

tolerance

Yo ~

Į.

Ŵ



# bacterial amendment: an effective probiotic therapy?



from lab to field



#### single bacteria vs communities

- bacterial diversity and density
- microbiome multifunctionality



# the root microbiome in hydroponics.



#### popular belief: hydroponic cultivation is sterile

- FALSE!
- creates a pathogen-vulnerable environment

#### microbiome in organic growing media

- more diverse and competitive than inorganic
- multifunctional and environmental resilience

# aims and objectives.







# collection of lettuce root bacterial communities.





- 5 locations (S1-5): 3 organic soil and 2 hydroponics
- PGPR product: *Bacillus* sp.



## growing media composition.

| group                | raw material |             |  |
|----------------------|--------------|-------------|--|
| peat (60%)           | black        | white       |  |
| other organics (20%) | coir pith    | wood fiber  |  |
| composts (10%)       | bark         | green waste |  |
| inorganics (10%)     | perlite      | sand        |  |





- Factorial design
- 10 growing media mixtures (M1-10)

#### 

## lettuce growth and bacterial amendment.





## the effectiveness of bacterial amendment depends on the bacterial source...



φ







## bacterial community amendments can be applied in controlled environment agriculture

• growing medium optimization is required



# identification of root bacterial community.







## growing media composition steers root bacterial community...

| peat           | white     | $\rightarrow$ | black       |
|----------------|-----------|---------------|-------------|
| other organics | coir pith | $\rightarrow$ | wood fiber  |
| composts       | bark      | $\rightarrow$ | green waste |

| 60 |   |
|----|---|
|    | - |
|    |   |

|                | bacterial co | mmuni             | ty structure |
|----------------|--------------|-------------------|--------------|
| peat           | black        | $\leftrightarrow$ | white        |
| other organics | coir pith    | $\leftrightarrow$ | wood fiber   |
| composts       | green waste  | $\leftrightarrow$ | bark         |
| inorganics     | perlite      | *                 | sand         |







## bacterial community amendment allows more control.





## high bacterial diversity promotes plant performance.

| composts  | bark                  | $\rightarrow$   | green waste |
|-----------|-----------------------|-----------------|-------------|
| amendment | contro                | $] \rightarrow$ | S3          |
|           |                       |                 |             |
|           |                       |                 | yield       |
| composts  | bark $\rightarrow$    | green v         | vaste +     |
| amendment | control $\rightarrow$ | S3              | - +         |

|              | diversity |         |
|--------------|-----------|---------|
|              | richness  | Shannon |
| fresh weight | 0.20      | 0.38    |
| head area    | 0.18      | 0.42    |
| root weight  |           | 0.28    |



# growing media composition and bacterial amendment introduce PGPRs.





bacterial community composition of growing media is highly variable



bacterial community amendment allows more control over the root zone



- introduce more diversity  $\rightarrow$  plant performance
- introduce PGPRs



#### redefining biological performance of growing media

• include multifunctionality and resilience to environmental changes

# lessons useful for the industry.



multifunctional PGPRs can improve plant growth and quality in controlled environment agriculture

- hydroponics is not sterile
- take advantage of microbial diversity in the root zone



## thank you!



- Email: <u>thijs.vangerrewey@ugent.be</u>
- LinkedIn: <u>www.linkedin.com/in/thijsvangerrewey</u>