SCIENCE MEETS LIFE

Single cell and spatial transcriptomics

Life Science Technology Specialist VIB Tech Watch team Michiel.bontinck@vib.be

IB

KU LEUVED

VIB Tech Watch

Scout

- Scout for disruptive technologies.
- Partner with companies

De-risk

• Funding.

• Hands-on support.

Facilitate

- Increase adoption of novel
 - technologies.
- Staying at the forefront of
- life science research

Tech Watch --- Early-access--

The premise of single cell analysis

VIB

SCIENCE MEETS LIFE

Single cell transcriptomics workflow

Single cell transcriptomics workflow

Developmental trajectories

Arabidopsis root single cell atlas

Atlassing reveals new marker genes

Wendrich J, et al. (2020) Science

Cell-type specific responses to stress (rice)

Cluster annotation

Maize ear atlas

Meta-cluster identity

- 1 Cortex
- 2 Cell cycle G2/M Phase
- 3 Determinate lateral organ
- 4 Xylem
- 5 Phloem
- 6 Meristem epidermis
- 7 Cell cycle S Phase
- 8 Pith
- 9 Meristem boundary
- 10 Meristem base
- 11 Adaxial meristem periphery
- 12 Bundle sheath

Xu X, et al. (2021) Developmental Cell

Meta-cluster 3

SCIENCE MEETS LIFE

10

Spatial transcriptomics

Method of the Year 2020: spatially resolved transcriptomics

Spatially resolved transcriptomics methods are changing the way we understand complex tissues.

Targeted spatial transcriptomics

Reconstructing spatial transcriptomics data to cell-type maps

Raw data and segmentation

Moffitt JR, et al. (2018) Science

Clustering on marker expression

Construct map

SCIENCE MEETS LIFE

Targeted spatial transcriptomics

Moffitt JR, Zhuang X,. (2016) Methods Enzymol

Method of choice for validating scRNA-seq markers

X Limited panel "budget"

Specialized equipment

Targeted spatial transcriptomics at VIB

1mm² 2million transcripts detected

 Reln Rasgrf2 Cux1 Cux2 Pou3f2 Pcp4 Fezf2 Bcl11b 	layer 1 layer 2/3 layer 2-4 layer 2-5 layer 5 layer 5 layer 5
• Fezf2	layer 5 layer 5
 Bcl11b Foxp2 Tle4 	layer 5-6 layer 6 layer 6
Tbr1Ccn2	layer 6 layer 6b

Unpublished data

Targeted spatial transcriptomics at PSB

Maize shoot apical meristem, 90 gene panel

Laureyns R, et al. (in preparation)

Targeted spatial transcriptomics at PSB

Untargeted spatial transcriptomics

Fixed tissue section

Application of 2D barcode matrix Permeabilisation and ligation of 2D barcodes Bulk library prep and sequencing Clustering and spatial

reconstruction

Untargeted spatial transcriptomics

B

Giacomello S, et al. (2017) Nature plants Giacomello S, et al. (2018) Nature protocols

SCIENCE MEETS LIFE

Untargeted spatial transcriptomics

Application of 2D barcode matrix

Fixed tissue section

Permeabilisation and ligation of 2D barcodes

Bulk library prep and sequencing

Clustering and spatial reconstruction

Chen Ao, et al. 2021 (BioRxiv)

Readout using illumina sequencing

.....

Additional benefits of spatial transcriptomics

- No protoplasting required
 - No protoplasting/stress- induced genes
 - No loss of cell types due to inefficient tissue dissociation or sample prep
- Throughput
 - Max output of a single 10X lane = 10k cells
 - Depending on sample, ST can interogate 100k of cells in a single run
- Beyond marker validation
 - Spatial co-expression analysis
 - Cell-cell interactions
 - Subcellular localisation of transcripts

Take home

Single cell transcriptomics

Discover novel markers for cell types and developmental states

Study response to environment or genetic perturbation at single cell level

Lacks spatial component

Targeted spatial

Validate novel single cell markers or locate new cell-types

Study spatial transcriptomes at (sub)cellular resolution

Requires rational target panel design

Untargeted spatial

Transcriptome-wide spatial mapping

Limited resolution

