

Techniques for kinetic plant phenotyping at the microscale

Guido Grossmann

Institute for Cell and Interaction Biology - HHU Düsseldorf

Cluster of Excellence in Plant Sciences - CEPLAS

Biology

RA2

I Theoretical Plant Biology and **Data** Science

Heinrich Heine Universität Düsseldorf

Pflanzenzüchtungsforschung

More than 50 labs are members of CEPLAS

Academic cooperation & technology transfer

European Sustainable Agriculture Through Genome Editing

Dr. Günter Strittmatter **CEPLAS** Technology Transfer and Cooperation Management

WASHINGTON STATE **UNIVERSITY**

Australian National University

ARC TRAINING CENTRE FOR

FUTURE CROPS

DEVELOPMENT

CEPLAS - Germany's Research Triangle for molecular plant sciences

Kinetic phenotyping: probing plant performance under changing environmental conditions

Guido Grossmann

Kinetic phenotyping: probing plant performance under changing environmental conditions

Guido Grossmann

Kinetic phenotyping: probing plant performance under changing environmental conditions

Fg

Guido Grossmann

Biosensors for dynamic and quantitative imaging of small molecules

- minimally invasive; genetically encoded •
- dynamic measurements
- subcellular targeting
- qualitative or quantitative (req. calibration)

Biosensors for dynamic and quantitative imaging of small molecules

- minimally invasive; genetically encoded •
- dynamic measurements
- subcellular targeting \bullet
- qualitative or quantitative (req. calibration)

Roots expressing genetically encoded FLIPglu FRET sensor

Grossmann et al. 2011 Plant Cell

Technologies for microscopic imaging of molecular dynamics

Uslu & Grossmann, Curr Opin Plant Biol 2015

Male and female gametophytes in Arabidopsis

Calcium waves in the egg cell upon sperm cell arrival and gamete fusion

Denninger et al., 2014 Nat Commun

Herbivory triggers Ca²⁺ waves towards younger leaves

Time is critical for *any* successful acclimatization

Goal: understanding the mechanisms that determine the kinetics of molecular dynamics?

The ever-expanding Biosensor toolbox

... for a broad spectrum of nutrients, metabolites and signaling molecules.

https://www.molecular-physiology.hhu.de/en/resources

modified from Uslu & Grossmann, Curr Opin Plant Biol 2015

RootChip

microfluidic perfusion and imaging platform for roots

- Individually controllable micro-perfusion chambers \bullet
- Root growth on chip = no specimen handling lacksquare
- Parallelization & automation

RootChip Grossmann et al. 2011 Plant Cell Grossmann et al. 2012 JoVE Lanquar et al. 2013 New Phytol

RootChip16 Jones et al. 2014 eLife; Denninger et al. 2014 Nat Commun Keinath et al. 2015 Mol Plant Souza et al. 2017 Plant Phys Xing et al. 2017 PNAS Brost et al. 2019 *Plant J*

dfRootChip Stanley, Shrivastava et al. 2018 New Phytol Stanley et al. 2018 bio-protocol

RootChip8S Denninger, Reichelt et al 2019 Curr Biol Guichard et al. 2020 Meth Cell Biol Rizza et al. 2021 PNAS

500 µm

RootChip - microfluidic technology for precision control of the root microenvironment

Microdevices for microscopic access to the "rhizosphere"

Massalha et al. 2017 PNAS

Adaptive response: root hairs enlarge the accessible substrate volume

Arabidopsis root grown in the RootChip-8S

max. length: ~800 µm

credit: Vanessa Fuchs

Is root hair growth coordinated or cell-autonomously regulated?

Using microfluidics to create asymmetric microenvironments for roots

ETHZ Jagriti Shrivastava

Stanley, Shrivastava et al. 2018 New Phytol

Root hairs respond to changing nutrient availability within minutes

Rapid **cell-autonomous** adjustment of growth rate through direct regulation of the tip growth machinery

Stanley, Shrivastava et al. 2018 New Phytol

fluorescein staining

cocultivation with microbes

Ca²⁺ response to flg22

inoculation with GFPexpressing P. fluorescens

Stanley, Shrivastava et al. 2018 New Phytol

Tracking root-bacteria interactions and Ca²⁺ signaling in planta

Tracking root-bacteria interactions and Ca2+ signaling in planta

credit: Christian-Frederic Kaiser

29 min

0.5X HM+Kan

RGECO1-expressing root inoculated with GFP-expressing *Pseudomonas fluorescens* (gift by Cara Haney)

Jagriti Shrivastava

Pseudo.

How do plants perceive and respond to changing environmental conditions?

Ca²⁺ signaling as readout for the perception of stress conditions

0

Scale 200 µm, time int. 1.5s

Towards a calcium signaling atlas

Milan Zupunski

TAKE HOME

dynamics in living plant tissue.

MICRODEVICES

SENSORS

microenvironment.

KINETIC PHENOTYPING

NANOSENSORS AND **MICROFLUIDICS**

Techniques for kinetic plant phenotyping at the microscale

- enable quantitative imaging of molecular uptake and signaling
- provide microscopic access and precise control over the plant
- digital phenotyping at high spatiotemporal resolution probing dynamic (sub-)cellular responses to changing conditions.

Current team members: Claudia Franken-Stemmler Vanessa Fuchs Michaela Gerads Marjorie Guichard **Christian-Frederic Kaiser** Alex Kukreja Tristan Wang Daša Wernerová <u>Milan Župunski</u>

Alumni:

Enric Bertran Garcia de Ollala Jonas Brandenburger Rik Brugman Philipp Denninger

Our research is funded by:

CEPLAS

Cluster of Excellence on Plant Sciences

THANK YOU

Anna Denzler (n. Reichelt) Till Franz Aylin Haas

Janos Löffler

Jagriti Shrivastava

Collaborators on plant-environment interactions Claire Stanley, Imperial College, London Richard Lamar, Bio Huma Netics Inc. Wolf Frommer, HHU Karin Schumacher, U. Heidelberg Matias Zurbriggen, HHU

Institute of **Cell** and

Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg

Heisenberg-Programm

Deutsche Forschungsgemeinschaft

CEPLAS II Cluster of Excellence on Plant Sciences

Opportunities for Cooperation in PPPs

From lab to field

- Technology Transfer Officer
- Active Scouting
- Establishing an Entrepreneurial Mindset
- CEPLAS Entrepreneurship Training Module (Design Thinking, Business Model Generation, IPR Protection, Start-up lectures)

- Integration of know-how/perspectives not present in CEPLAS; sustainable interaction with mutual benefit
- Participation in novel educational approaches
- Support of application relevant projects: integration of know-how and financial support
- Economic exploitation of research results; generation of ROI for public investment in research
- Opening career opportunities for scientists

- Joint research projects in fields of mutual interest Sponsoring: CEPLAS Graduate School, Postdoctoral Fellows,
- **Junior Research Groups**
- Mentoring: early career researchers
- Internships
- Participation in teaching programs
- Membership in Steering Bodies
- Joint program for support of start-up foundations

Commercial exploitation rights according to contribution of partners

CEPLAS II

For further contacts:

Dr. Günter Strittmatter CEPLAS Technology Transfer and Cooperation Management Heinrich-Heine-Universität Düsseldorf Building 22.07, Level 01, Room 033 Universitätsstraße 1 40225 Düsseldorf Germany Telephone: +49-175-2458056 Email: guenter.strittmatter@hhu.de

